Annealed Hopfield Neural Network with Moment and Entropy Constraints for Magnetic Resonance Image Classification

نویسنده

  • Jzau-Sheng LIN
چکیده

This paper describes the application of an unsupervised parallel approach called the Annealed Hopfield Neural Network (AHNN) using a modified cost function with moment and entropy preservation for magnetic resonance image (MRI) classification. In the AHNN, the neural network architecture is same as the original 2-D Hopfield net. And a new cooling schedule is embedded in order to make the modified energy function to converge to an equilibrium state. The idea is to formulate a clustering problem where the criterion for the optimum classification is chosen as the minimization of the Euclidean distance between training vectors and cluster-center vectors. In this article, the intensity of a pixel in an original image, the first moment combined with its neighbors, and their gray-level entropy are used to construct a 3-component training vector to map a neuron into a two-dimensional annealed Hopfield net. Although the simulated annealing method can yield the global minimum, it is very timeconsuming with asymptotic iterations. In addition, to resolve the optimal problem using Hopfield or simulated annealing neural networks, the weighting factors to combine the penalty terms must be determined. The quality of final result is very sensitive to these weighting factors, and feasible values for them are difficult to find. Using the AHNN for magnetic resonance image classification, the need of finding weighting factors in the energy function can be eliminated and the rate of convergence is much faster than that of simulated annealing. The experimental results show that better and more valid solutions can be obtained using the AHNN than the previous approach in classification of the computer generated images. Promising solutions of MRI segmentation can be obtained using the proposed method. In addition, the convergence rates with different cooling schedules in the test phantom will be discussed. key words: simulated annealing, mean field annealing, annealed Hopfield neural network, magnetic resonance image

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image segmentation using an annealed Hopfield neural network

Good image segmentation can be achieved by finding the optimum solution to an appropriate energy function. A liopfleld neural network has been shown to solve complex optimization problems fast, but it only guarantees convergence to a local minimum of the optimization function. Alternatively, mean field annealing has been shown to reach the global or the nearly global optimum solution when solvi...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR sig...

متن کامل

A Modified Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR sig...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000